# The Rotational Spectrum of (17O)Ketene

A. Guarnieri and A. Huckauf

Technische Fakultät der Christian-Albrechts-Universität zu Kiel, Lehrstuhl für Hochfrequenztechnik, Kaiserstr. 2, D-24143 Kiel; Institut für Physikalische Chemie der Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 8, D-24098 Kiel, Germany

Reprint requests to Prof. A. G.; Fax: +49 431 880 6152; E-mail: ag@tf.uni-kiel.de

Z. Naturforsch. 56 a, 440-446 (2001); received April 9, 2001

The rotational spectrum of  ${\rm H_2CC^{17}O}$  in the ground vibrational state has been investigated between 20 and 330 GHz. From 82 *R*-branch transitions a set of rotational constants and several centrifugal distortion constants could be derived, employing the Watson *S*-reduction formalism. The obtained rotational constants in MHz are: A = 282071.6(223), B = 10013.4764(28), C = 9655.9118(24). The nuclear quadrupole coupling structure of the  $J'_{Ka'Kc'} \leftarrow J_{KaKc} = 1_{01} \leftarrow 0_{00}$  line has been recorded by means of molecular beam Fourier transform microwave spectroscopy allowing the determination of the nuclear quadrupole constant  $\chi_{aa} = -1.534(54)$  MHz (without considering the spin-rotation interaction). A recalculation of the  $r_s$ -structure has also been carried out, using the constants of the new isotopomer. The result agrees with the values reported by East et al. in 1995. This is, to our knowledge, the first reported investigation of the  $H_2CC^{17}O$  rotational spectrum.

Key words: Rotational Spectra; Structure; Ketene; Isotopomer.

#### Introduction

The microwave and millimeter-wave spectra of ketene and its isotopomers have been the subject of a large number of studies since the beginning of microwave spectroscopy.

Several reviews have appeared, summarizing much of the work (see, e. g., [1]), but new measurements continue to be made. The spectrum, particularly that of the normal isotopomer in the ground and first excited vibrational states, has been subject of increasingly refined analyses in order to understand the different interactions which connect the states up to 1000 cm<sup>-1</sup> [2 - 5]. Spectra of isotopomers with D, <sup>13</sup>C and <sup>18</sup>O have been investigated in [6, 7].

A knowledge of the rotational spectrum of the various isotopomers of ketene could not only be of interest for refined structural analyses, but also because ketene has been found to be present in several interstellar clouds [8 - 19]. Molecules containing Oxygen-17 and Oxygen-18, as for instance CO, have been detected in interstellar clouds, allowing the determination of the <sup>18</sup>O/<sup>17</sup>O ratio which can give important information about star life and development [20 - 25].

Nothing is known until now, to our knowledge, about the ketene isotopomer with <sup>17</sup>O, and therefore

this paper reports an investigation of the spectrum of H<sub>2</sub>CC<sup>17</sup>O, considering also a determination of the nuclear quadrupole coupling constant related to this nucleus.

## **Experimental**

Ketene has been obtained by vacuum pyrolysis of acetic anhydride,  $(CH_3CO)_2O$ , at 800 °C. The byproduct of the pyrolysis, acetic acid, was held back in a cold trap at -80 °C, and the ketene was collected in a second cold trap held at liquid nitrogen temperature.

The spectra of the <sup>17</sup>O isotopomer have been recorded in natural concentration with a millimeter / submillimeter-wave (MMW / SubMMW) spectrometer [5] at high frequencies and with a molecular beam Fourier transform microwave (MBFTMW) spectrometer [26] at low frequencies. The MMW / SubMMW spectrometer is of the type operating in source modulation mode and second derivative presentation of the absorption lines. The sources in the range 40 - 550 GHz were phase-locked against a frequency synthesizer (PTS 500) which was controlled by a 10 MHz frequency standard provided by a GPS receiver. The free-space absorption cell consisted of a 10 cm diameter glass tube, 2.40 m in length, capped

0932-0784 / 01 / 0600-0440 \$ 06.00 © Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com



Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

| Table 1. Constants of $H_2C_2^{17}O$ determined for different maximum values of the $K_a$ quantum number using the Watson |
|---------------------------------------------------------------------------------------------------------------------------|
| S-reduced formalism. The fit with $K_a \leq 7$ is considered to be the "best" one (see text).                             |

| Parameter          | Fit with 62 lines up to $K_a = 5$ | Fit with 72 lines up to $K_a = 6$ | Fit with 82 lines up to $K_a = 7$ | Fit with 92 lines up to $K_a = 8$ | Fit with 102 lines up to $K_a = 9$ | Unit |
|--------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|------|
| A                  | 282113(31)                        | 282111(24)                        | 282072(22)                        | 282369(125)                       | 280097(1084)                       | MHz  |
| B                  | 10013.4750(27)                    | 10013.4752(27)                    | 10013.4764(28)                    | 10013.4555(166)                   | 10013.6381(1516)                   | MHz  |
| C                  | 9655.9111(23)                     | 9655.9112(23)                     | 9655.9118(24)                     | 9655.9049(144)                    | 9655.9533(1330)                    | MHz  |
| $D_J$              | 3.1050(24)                        | 3.1053(22)                        | 3.1056(22)                        | 3.0868(124)                       | 3.2476(1097)                       | kHz  |
| $D_{JK}$           | 455.11(32)                        | 455.20(20)                        | 455.69(14)                        | 450.72(60)                        | 482.81(416)                        | kHz  |
| $D_K$              | 22.84*                            | 22.84*                            | 22.84*                            | 22.84*                            | 22.84*                             | MHz  |
| $d_1$              | -135.8(26)                        | -135.8(26)                        | -136.1(28)                        | -128.2(166)                       | -203.9(1530)                       | Hz   |
| $d_2$              | -49.81(110)                       | -49.86(98)                        | -50.97(97)                        | -42.82(575)                       | -104.16(5218)                      | Hz   |
| $H_J$              | -2.04*                            | -2.04*                            | -2.04*                            | -2.04*                            | -2.04*                             | mHz  |
| $H_{JK}$           | 1.87(61)                          | 2.05(40)                          | 2.36(29)                          | -4.01(129)                        | 37.25(894)                         | Hz   |
| $H_{KJ}$           | -546.3(234)                       | -540.4(91)                        | -509.4(45)                        | -711.7(145)                       | 318.8(782)                         | Hz   |
| $H_K$              | 5.23*                             | 5.23*                             | 5.23*                             | 5.23*                             | 5.23*                              | KHz  |
| $L_{JJKK}$         | -38.1(244)                        | -29.7(115)                        | -18.2(62)                         | -184.4(211)                       | 654.1(1171)                        | mHz  |
| $L_{JKKK}$         | 2.831(551)                        | 2.893(142)                        | 3.376(50)                         | 1.498(121)                        | 9.052(508)                         | Hz   |
| $\sigma_{\rm Fit}$ | 26.5                              | 27.3                              | 28.6                              | 173.2                             | 1596.7                             | kHz  |

<sup>\*</sup> Not determinable. Value fixed to that of the main isotopomer H<sub>2</sub>CCO as given in [27].

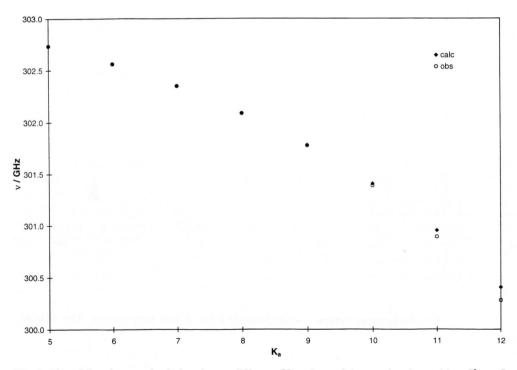



Fig. 1. Plot of line frequencies belonging to different  $K_a$  values of the rotational transition  $J' \leftarrow J = 15 \leftarrow 14$  (normal isotopomer). The calculated values have been obtained with the parameters resulting from the line fit, considering  $K_a$  values up to 7, which gives an acceptable value of the standard deviation. Observed values show in fact already a displacement with respect to the calculated ones for  $K_a \geq 8$ . This displacement is in this figure only seen for  $K_a \geq 10$  because of the unfavorable coordinate scale (See text).

at the ends with Teflon windows and provided externally with teflon collimating lenses. Low-noise detection was achieved by a liquid helium cooled InSb bolometer ("Putley-detector").

Table 2a. Observed and calculated transition frequencies of (<sup>17</sup>O)ketene.

 $\nu_{\rm calc}$ /GHz o-c/kHz  $K'_a$  $K'_c$ J $K_a$   $K_c$  $\nu_{\rm obs}/{\rm GHz}$ 19.669374 19.669377 -3 78.673261 78.673234 79.387501 79.387498 77.957323 77.957311 98.338318 -2498.338342 99.233120 99.233126 -6 97.445407 -39 97.445443 98.333311 98.333320 -9 98.326320 98.326323 -398.305149 -1598.305164 98.305149 98.305161 -12235.910502 235.910499 233.831345 233.831354 -6 235.951825 235.951789 235.840527 235.840494 9 11 8 235.840527 235.840494 6 235.734248 235.734281 -33235.734248 235.734281 -335 235.602231 235.602201 6 235.602231 235.602201 235.440334 235.440334 235.440334 235.440334 235.244911 235.243817 1091\* 235.244911 235.243817 1091\* 235.003003 235.006193 -3190\*235.003003 235.006193 -3190\*255.546629 255.546629 257.954049 257.954070 -21253.308777 253.308756 255.734515 255.734527 -9 12 12 255.607298 255.607295 10 12 255.584283 255.584364 -8110 255.583821 11 12 255.583731 255.491161 255.491152 255.491161 255.491152 255.375639 255.375648 -9 255.375648 255.375639 -9 255.232377 255.232362 255.232377 255.232362 255.056939 255.056927 255.056939 255.056927 5 12 254.845705 254.844023 1682\* 5 254.845705 254.844023 1682\* 3 254.580212 254.586642 -6431\*254.580212 254.586642 -6431\*14 13 13 275.177219 275.177234 -1512 277.786121 277.786124 

The accuracy of the frequency measurements carried out at room temperature and at a pressure of 1 to 3 Pa is supposed to be, in this particular case,  $\pm 25 \text{ kHz}$ .

The MBFTMW measurements were performed at the frequency of the  $J'_{Ka'Kc'} \leftarrow J_{KaKc} = 1_{01} \leftarrow 0_{00}$  line at 19.6 GHz with the setup described in [26].

Table 2a (continued).

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |        |        |    |       |       |                           |                            |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|--------|----|-------|-------|---------------------------|----------------------------|---------|
| 14         2         12         13         2         11         275.420090         275.261086         0           14         2         13         13         2         12         275.261089         275.261086         0           14         3         11         13         3         10         275.242975         275.242904         -18           14         4         10         13         4         9         275.141157         275.141160         -3           14         4         10         13         4         9         275.016224         275.016257         -15           14         5         10         13         5         9         275.016224         275.016257         -15           14         6         8         13         6         7         274.672691         274.672692         -21           14         6         8         13         7         7         274.672671         274.672692         -21           14         7         7         13         7         274.672671         274.672692         -21           14         7         7         13         7         274.672671         274.6                                                                                                                               | J' | $K_a'$ | $K_c'$ | J  | $K_a$ | $K_c$ | $\nu_{\rm obs}/{\rm GHz}$ | $\nu_{\rm calc}/{\rm GHz}$ | o-c/kHz |
| 14         2         13         13         2         12         275.261089         275.242924         48           14         3         11         13         3         10         275.242975         275.242040         -18           14         4         10         13         4         9         275.141157         275.141157         0           14         4         11         13         4         10         275.141157         275.141157         0           14         5         9         13         5         8         275.016242         275.016257         -15           14         6         8         13         6         7         274.861696         274.861717         -21           14         6         9         13         6         8         274.861696         274.861717         -21           14         7         7         3         7         274.672671         274.672692         -21           14         7         7         3         7         274.445713         274.443402         2311*           14         8         6         13         8         5         274.445713         274.466                                                                                                                               | 14 |        | 14     |    |       | 13    | 272.784119                | 272.784128                 | -9      |
| 14         3         11         13         3         10         275.242975         275.242924         48           14         4         10         13         4         9         275.141157         275.141160         -3           14         4         11         13         4         9         275.141157         275.141157         0           14         5         9         13         5         8         275.016242         275.016257         -15           14         6         8         13         6         7         274.861696         274.861717         -21           14         6         8         13         6         7         274.672671         274.672692         -21           14         7         7         13         7         6         274.672671         274.672692         -21           14         7         7         13         7         6         274.672671         274.672692         -21           14         7         7         13         7         6         274.672671         274.672692         -21           14         7         7         13         8         6 <t></t>                                                                                                                                        | 14 | 2      | 12     | 13 | 2     | 11    | 275.420090                | 275.420081                 | 9       |
| 14         3         12         13         3         11         275.241986         275.242004         -18           14         4         10         13         4         9         275.141157         275.141160         -3           14         4         11         13         4         10         275.141157         275.141157         0           14         5         9         13         5         8         275.016242         275.016257         -15           14         6         8         13         6         7         274.861696         274.861717         -21           14         6         9         13         6         8         274.4672671         274.672692         -21           14         7         8         13         7         7         274.672671         274.672692         -21           14         8         6         13         8         5         274.445713         274.443402         2311*           14         8         7         13         8         6         274.445713         274.166277         -10382*           15         0         15         14         0         14                                                                                                                                     | 14 | 2      | 13     | 13 | 2     | 12    | 275.261089                | 275.261086                 | 0       |
| 14         4         10         13         4         9         275.141157         275.141160         -3           14         4         11         13         4         10         275.141157         275.141157         0           14         5         9         13         5         8         275.016242         275.016257         -15           14         6         8         13         6         7         274.861696         274.861717         -21           14         6         9         13         6         8         274.861969         274.861717         -21           14         7         7         13         7         6         274.672671         274.672692         -21           14         8         6         13         8         5         274.445713         274.443402         2311*           14         9         5         13         9         4         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801897         294.801900         -3           15         1         14         1         13         297.615794                                                                                                                               | 14 | 3      | 11     | 13 | 3     | 10    | 275.242975                | 275.242924                 | 48      |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 | 3      | 12     | 13 | 3     | 11    | 275.241986                | 275.242004                 | -18     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 | 4      | 10     | 13 | 4     | 9     | 275.141157                | 275.141160                 | -3      |
| 14         5         9         13         5         8         275.016242         275.016257         -15           14         5         10         13         5         9         275.016242         275.016257         -15           14         6         8         13         6         7         274.861696         274.861717         -21           14         7         7         13         6         274.672671         274.672692         -21           14         7         7         13         8         5         274.475713         274.473402         2311*           14         8         6         13         8         5         274.445713         274.443402         2311*           14         9         5         13         9         4         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801897         294.819600         -3           15         1         14         1         1         297.615794         297.615806         -12           15         2         14         14         2         12         294.801113         <                                                                                                                           | 14 | 4      | 11     | 13 | 4     | 10    | 275.141157                | 275.141157                 |         |
| 14         5         10         13         5         9         275.016242         275.016257         -15           14         6         8         13         6         7         274.861696         274.861717         -21           14         6         9         13         6         8         274.861696         274.861717         -21           14         7         7         13         7         6         274.672671         274.672692         -21           14         7         8         13         7         7         274.672671         274.672692         -21           14         8         6         13         8         5         274.45713         274.443402         2311*           14         9         5         13         9         4         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.891897         294.18090         -3           15         1         14         1         13         297.615794         297.615806         -12           15         0         15         14         1         12         294.91303                                                                                                                               | 14 | 5      | 9      | 13 | 5     | 8     | 275.016242                |                            |         |
| 14         6         8         13         6         7         274.861696         274.861717         -21           14         6         9         13         6         8         274.861696         274.861717         -21           14         7         7         13         7         6         274.672671         274.672692         -21           14         8         6         13         8         5         274.445713         274.443402         2311*           14         8         6         13         8         6         274.445713         274.443402         2311*           14         9         6         13         9         5         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801900         -3           15         1         14         1         1         294.801900         -3           15         1         14         1         1         294.801900         -3           15         1         14         1         1         294.801933         3           15         1         14         1                                                                                                                                                       | 14 | 5      | 10     | 13 |       | 9     |                           |                            |         |
| 14         6         9         13         6         8         274.861696         274.861717         -21           14         7         7         13         7         6         274.672671         274.672692         -21           14         7         8         13         7         7         274.672671         274.672692         -21           14         8         6         13         8         5         274.445713         274.443402         2311*           14         9         5         13         9         4         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801897         294.801900         -3           15         1         14         1         13         297.615794         297.615806         -12           15         1         14         1         13         297.615794         297.615806         -12           15         1         14         1         13         297.615806         -12           15         1         14         2         12         294.801830         3           15         1                                                                                                                                            |    |        |        |    |       |       |                           |                            |         |
| 14         7         7         13         7         6         274.672671         274.672692         -21           14         7         8         13         7         7         274.672671         274.4672692         -21           14         8         6         13         8         5         274.445713         274.443402         2311*           14         9         5         13         9         4         274.155895         274.166277         -10382*           14         9         6         13         9         5         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801897         297.615806         -12           15         1         14         14         1         13         297.615806         -12           15         2         13         14         2         12         295.108660         295.108648         12           15         2         14         14         2         12         294.901170         294.913033         3           15         3         12         14         3         11         294.99011                                                                                                                               |    |        |        |    |       |       |                           |                            |         |
| 14         7         8         13         7         7         274.672671         274.672692         -21           14         8         6         13         8         5         274.445713         274.443402         2311*           14         8         7         13         8         6         274.445713         274.443402         2311*           14         9         5         13         9         4         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801897         294.801900         -3           15         1         14         1         13         297.615794         297.615806         -12           15         2         13         14         2         12         295.108660         295.108648         12           15         2         14         14         2         12         295.108660         294.913033         3           15         2         14         14         2         12         294.991113         54           15         3         13         4         3         12         294.990186         12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                        |    |        |        |    |       |       |                           |                            |         |
| 14         8         6         13         8         5         274.445713         274.443402         2311*           14         8         7         13         8         6         274.445713         274.443402         2311*           14         9         6         13         9         5         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801897         294.801900         -3           15         1         14         1         13         297.615794         297.615806         -12           15         2         13         14         2         12         295.108660         295.108648         12           15         2         14         14         2         13         294.913033         3         3           15         3         12         14         3         11         294.913036         294.910113         54           15         3         13         14         3         12         294.899801         12           15         4         11         4         10         294.790466         294.790466         294.                                                                                                                               |    |        |        |    |       |       |                           |                            |         |
| 14         8         7         13         8         6         274.445713         274.443402         2311*           14         9         5         13         9         4         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801897         294.801900         -3           15         1         14         1         13         297.615794         297.615806         -12           15         2         14         14         2         13         294.913036         294.913033         3           15         2         14         14         2         13         294.991170         294.991113         54           15         3         12         14         3         12         294.899821         294.899806         12           15         4         11         14         4         10         294.9901170         294.899806         12           15         4         11         4         10         294.790466         294.790463         3           15         5         10         14         5         9         294.656006         <                                                                                                                           |    |        |        |    |       |       |                           |                            |         |
| 14         9         5         13         9         4         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801897         294.801900         -3           15         1         14         14         1         13         297.615896         -12           15         2         13         14         2         12         295.108660         295.108648         12           15         2         14         14         2         13         294.913033         3         3           15         2         14         3         11         294.913036         294.913033         3           15         3         12         14         3         12         294.91313         5           15         3         13         14         3         12         294.91313         3         3           15         3         13         14         3         12         294.899806         12           15         4         11         4         10         294.790466         294.790463         3           15         5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                              |    |        |        |    |       |       |                           |                            |         |
| 14         9         6         13         9         5         274.155895         274.166277         -10382*           15         0         15         14         0         14         294.801897         294.801900         -3           15         1         14         14         1         13         297.615806         -12           15         2         13         14         2         12         295.108660         295.108648         12           15         2         14         14         2         13         294.913033         3           15         3         12         14         3         11         294.991170         294.991113         54           15         3         13         14         3         12         294.899806         12           15         4         11         14         4         10         294.790466         294.790466         0           15         4         12         14         4         11         294.790466         294.790463         3           15         5         10         14         5         9         294.656006         294.656051         -45 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                  |    |        |        |    |       |       |                           |                            |         |
| 15         0         15         14         0         14         294.801897         294.801900         -3           15         1         14         14         1         13         297.615794         297.615806         -12           15         2         13         14         2         12         295.108660         295.108648         12           15         2         14         14         2         13         294.913036         294.913033         3           15         3         12         14         3         11         294.9911170         294.899806         12           15         3         13         14         3         12         294.899821         294.899806         12           15         4         11         4         10         294.790466         294.790466         0           15         4         12         14         4         11         294.294.790466         0           15         5         10         14         5         9         294.656006         294.656051         -45           15         6         9         14         6         8         294.490188         294.490                                                                                                                               |    |        |        |    |       |       |                           |                            |         |
| 15         1         14         14         1         13         297.615794         297.615806         -12           15         2         13         14         2         12         295.108660         295.108648         12           15         2         14         14         2         13         294.913036         294.913033         3           15         3         12         14         3         11         294.9011170         294.991113         54           15         4         11         14         4         10         294.790466         294.790466         0           15         4         11         14         4         11         294.790466         294.790463         3           15         5         10         14         5         9         294.656006         294.656051         -45           15         5         11         14         6         9         294.656006         294.656051         -45           15         6         10         14         6         9         294.490188         294.490206         -15           15         7         8         14         7         7                                                                                                                                        |    |        |        |    |       |       |                           |                            |         |
| 15         2         13         14         2         12         295.108660         295.108648         12           15         2         14         14         2         13         294.913036         294.913033         3           15         3         12         14         3         11         294.901170         294.999806         12           15         4         11         14         4         10         294.790466         294.790466         0           15         4         12         14         4         11         294.790466         294.790463         3           15         5         10         14         5         9         294.656006         294.656051         -45           15         5         11         14         5         10         294.656006         294.656051         -45           15         5         11         14         6         9         294.656006         294.656051         -45           15         6         9         14         6         8         294.490188         294.490206         -15           15         7         9         14         7         8                                                                                                                                          |    |        |        |    |       |       |                           |                            |         |
| 15         2         14         14         2         13         294.913036         294.913033         3           15         3         12         14         3         11         294.901170         294.991113         54           15         3         13         14         3         12         294.899821         294.899806         12           15         4         11         14         4         10         294.790466         294.790466         0           15         4         12         14         4         11         294.790466         294.790463         3           15         5         10         14         5         9         294.656006         294.656051         -45           15         6         11         4         6         8         294.490188         294.490206         -15           15         6         10         14         6         9         294.490188         294.490206         -15           15         7         9         14         7         8         294.287576         294.287567         6           15         7         9         14         7         8         <                                                                                                                                    |    |        |        |    |       |       |                           |                            |         |
| 15         3         12         14         3         11         294.901170         294.991113         54           15         3         13         14         3         12         294.899821         294.899806         12           15         4         11         14         4         10         294.790466         294.790463         3           15         5         10         14         5         9         294.656006         294.656051         -45           15         5         11         14         5         10         294.656006         294.656051         -45           15         6         14         6         8         294.490188         294.490206         -15           15         6         10         14         6         9         294.490188         294.490206         -15           15         7         9         14         7         294.287576         294.287567         6           15         7         9         14         7         8         294.045020         294.041890         3130*           15         8         7         14         8         6         294.045020         294                                                                                                                               |    |        |        |    |       |       |                           |                            |         |
| 15         3         13         14         3         12         294.899821         294.899806         12           15         4         11         14         4         10         294.790466         294.790463         3           15         4         12         14         4         11         294.790466         294.790463         3           15         5         10         14         5         9         294.656006         294.656051         -45           15         6         9         14         6         8         294.490188         294.490206         -15           15         6         10         14         6         9         294.490188         294.490206         -15           15         7         8         14         7         7         294.287576         294.287567         6           15         7         9         14         7         8         294.287576         294.041890         3130*           15         8         7         14         8         6         294.045020         294.041890         3130*           15         9         7         14         9         6                                                                                                                                           |    |        |        |    |       |       |                           |                            |         |
| 15         4         11         14         4         10         294.790466         294.790466         0           15         4         12         14         4         11         294.790466         294.790463         3           15         5         10         14         5         9         294.656006         294.656051         -45           15         6         9         14         6         8         294.490188         294.490206         -15           15         6         10         14         6         9         294.490188         294.490206         -15           15         6         10         14         6         9         294.490188         294.490206         -15           15         7         8         14         7         7         294.287576         294.287567         6           15         7         9         14         7         8         294.287576         294.041890         3130*           15         8         7         14         8         6         294.045020         294.041890         3130*           15         9         7         14         9         6                                                                                                                                           |    |        |        |    |       |       |                           |                            |         |
| 15         4         12         14         4         11         294.790466         294.790463         3           15         5         10         14         5         9         294.656006         294.656051         -45           15         5         11         14         5         10         294.656006         294.656051         -45           15         6         9         14         6         8         294.490188         294.490206         -15           15         6         10         14         6         9         294.490188         294.490206         -15           15         7         8         14         7         7         294.287576         294.287567         6           15         7         9         14         7         8         294.287576         294.287567         6           15         8         8         14         8         7         294.045020         294.041890         3130**           15         9         6         14         9         5         293.729950         293.745033         -15080**           15         9         7         14         9         6                                                                                                                                        |    |        | 13     |    |       |       |                           |                            | 12      |
| 15         5         10         14         5         9         294.656006         294.656051         -45           15         5         11         14         5         10         294.656006         294.656051         -45           15         6         9         14         6         8         294.490188         294.490206         -15           15         6         10         14         6         9         294.490188         294.490206         -15           15         7         8         14         7         7         294.287576         294.287567         6           15         7         9         14         7         8         294.287576         294.287567         6           15         8         7         14         8         6         294.045020         294.041890         3130*           15         9         6         14         9         5         293.729950         293.745033         -15080*           15         9         7         14         9         6         293.729950         293.745033         -15080*           16         0         16         15         0         15                                                                                                                                    |    | 4      |        | 14 | 4     | 10    | 294.790466                | 294.790466                 | 0       |
| 15         5         11         14         5         10         294.656006         294.656051         -45           15         6         9         14         6         8         294.490188         294.490206         -15           15         6         10         14         6         9         294.490188         294.490206         -15           15         7         8         14         7         7         294.287576         294.287567         6           15         7         9         14         7         8         294.287576         294.287567         6           15         8         7         14         8         6         294.045020         294.041890         3130*           15         9         6         14         9         5         293.729950         293.745033         -15080*           15         9         7         14         9         6         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420216         36           16         1         15         15         314.42931         317.442943 <td< td=""><td></td><td></td><td>12</td><td>14</td><td></td><td>11</td><td>294.790466</td><td>294.790463</td><td>3</td></td<>         |    |        | 12     | 14 |       | 11    | 294.790466                | 294.790463                 | 3       |
| 15         6         9         14         6         8         294.490188         294.490206         -15           15         6         10         14         6         9         294.490188         294.490206         -15           15         7         8         14         7         7         294.287576         294.287567         6           15         7         9         14         7         8         294.287576         294.287567         6           15         8         7         14         8         6         294.045020         294.041890         3130*           15         9         6         14         9         5         293.729950         293.745033         -15080*           15         9         7         14         9         6         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420216         36           16         1         15         15         314.420213         317.442943         -12           16         1         16         15         15         314.800425         314.800434         -9                                                                                                                                     | 15 | 5      | 10     | 14 | 5     | 9     | 294.656006                | 294.656051                 | -45     |
| 15         6         10         14         6         9         294.490188         294.490206         -15           15         7         8         14         7         7         294.287576         294.287567         6           15         7         9         14         7         8         294.287576         294.287567         6           15         8         7         14         8         6         294.045020         294.041890         3130*           15         9         6         14         9         5         293.729950         293.745033         -15080*           15         9         7         14         9         6         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420216         36           16         1         15         15         14         317.442931         317.442943         -12           16         1         16         15         1         15         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9 </td <td>15</td> <td>5</td> <td>11</td> <td>14</td> <td>5</td> <td>10</td> <td>294.656006</td> <td>294.656051</td> <td>-45</td> | 15 | 5      | 11     | 14 | 5     | 10    | 294.656006                | 294.656051                 | -45     |
| 15         7         8         14         7         7         294.287576         294.287567         6           15         7         9         14         7         8         294.287567         294.287567         6           15         8         7         14         8         6         294.045020         294.041890         3130*           15         8         8         14         8         7         294.045020         294.041890         3130*           15         9         6         14         9         5         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420252         314.420216         36           16         1         15         15         1         4         317.442931         317.442943         -12           16         1         16         15         1         5         314.420216         36           16         1         16         15         1         317.442931         317.442943         -12           16         1         16         15         1         314.800425         314.800434         -                                                                                                                               | 15 | 6      | 9      | 14 | 6     | 8     | 294.490188                | 294.490206                 | -15     |
| 15         7         9         14         7         8         294.287576         294.287567         6           15         8         7         14         8         6         294.045020         294.041890         3130*           15         8         8         14         8         7         294.045020         294.041890         3130*           15         9         6         14         9         5         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420252         314.420216         36           16         1         15         15         1         4         317.442931         -12           16         1         16         15         1         15         311.728140         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.558904         314.558909         45           16         3         14         15         3         314.558954         314.5                                                                                                                               | 15 | 6      | 10     | 14 | 6     | 9     | 294.490188                | 294.490206                 | -15     |
| 15         8         7         14         8         6         294.045020         294.041890         3130*           15         8         8         14         8         7         294.045020         294.041890         3130*           15         9         6         14         9         5         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420252         314.420216         36           16         1         15         15         1         4         317.442931         317.442943         -12           16         1         16         15         1         14         317.7442943         -12           16         1         16         15         1         15         311.728140         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.562984         314.563002         -18           16         3         13         15         3         12         314.558                                                                                                                               | 15 | 7      | 8      | 14 | 7     | 7     | 294.287576                | 294.287567                 | 6       |
| 15         8         8         14         8         7         294.045020         294.041890         3130*           15         9         6         14         9         5         293.729950         293.745033         -15080*           15         9         7         14         9         6         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420252         314.420216         36           16         1         15         15         1         4         317.442931         317.442943         -12           16         1         16         15         1         15         311.728140         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.558904         314.558909         45           16         3         14         15         3         314.558954         314.558909         45           16         3         14         15         3         313.4438995                                                                                                                               | 15 | 7      | 9      | 14 | 7     | 8     | 294.287576                | 294.287567                 | 6       |
| 15         8         8         14         8         7         294.045020         294.041890         3130*           15         9         6         14         9         5         293.729950         293.745033         -15080*           15         9         7         14         9         6         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420252         314.420216         36           16         1         15         15         1         4         317.442931         317.442943         -12           16         1         16         15         1         15         311.728140         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.558904         314.558909         45           16         3         14         15         3         314.558954         314.558909         45           16         3         14         15         3         313.4438995                                                                                                                               | 15 | 8      | 7      | 14 | 8     | 6     | 294.045020                | 294.041890                 | 3130*   |
| 15         9         6         14         9         5         293.729950         293.745033         -15080*           15         9         7         14         9         6         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420252         314.420216         36           16         1         15         15         1         4         317.442943         -12           16         1         16         15         1         15         311.728140         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.562984         314.563002         -18           16         3         13         15         3         12         314.558954         314.558909         45           16         3         14         15         3         314.558954         314.439019         -24           16         4         12         15         4         11         314.438995 <td< td=""><td></td><td></td><td></td><td>14</td><td></td><td></td><td></td><td></td><td></td></td<>                                  |    |        |        | 14 |       |       |                           |                            |         |
| 15         9         7         14         9         6         293.729950         293.745033         -15080*           16         0         16         15         0         15         314.420252         314.420216         36           16         1         15         15         1         4         317.442931         317.442943         -12           16         1         16         15         1         15         311.728140         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.562984         314.563002         -18           16         3         13         15         3         12         314.558954         314.558909         45           16         3         14         15         3         314.558954         314.558909         45           16         4         12         15         4         11         314.438995         314.439019         -24           16         4         12         15         4         12         31                                                                                                                               | 15 | 9      | 6      | 14 | 9     | 5     |                           |                            |         |
| 16         0         16         15         0         15         314.420252         314.420216         36           16         1         15         15         1         4317.442931         317.442943         -12           16         1         16         15         1         15         311.728140         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.562984         314.563002         -18           16         3         13         15         3         12         314.558954         314.558909         45           16         3         14         15         3         13         314.557072         314.557102         -30           16         4         12         15         4         11         314.438995         314.439013         -18           16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11         31                                                                                                                               |    | 9      | 7      | 14 | 9     | 6     |                           |                            |         |
| 16         1         15         15         1         14         317.442931         317.442943         -12           16         1         16         15         1         15         311.728140         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.562984         314.563002         -18           16         3         13         15         3         12         314.558954         314.558909         45           16         3         14         15         3         13         314.557072         314.557102         -30           16         4         12         15         4         11         314.438995         314.439019         -24           16         4         13         15         4         12         314.438995         314.439013         -18           16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11                                                                                                                               |    |        |        |    |       |       |                           |                            |         |
| 16         1         16         15         1         15         311.728140         311.728179         -39           16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.562984         314.563002         -18           16         3         13         15         3         12         314.558954         314.558909         45           16         3         14         15         3         13         314.557072         314.557102         -30           16         4         12         15         4         11         314.438995         314.439019         -24           16         4         13         15         4         12         314.438995         314.439013         -18           16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11         314.294969         -3           16         6         10         15         6         9         314.17828 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                        |    |        |        |    |       |       |                           |                            |         |
| 16         2         14         15         2         13         314.800425         314.800434         -9           16         2         15         15         2         14         314.562984         314.563002         -18           16         3         13         15         3         12         314.558954         314.558909         45           16         3         14         15         3         13         314.557072         314.557102         -30           16         4         12         15         4         11         314.438995         314.439019         -24           16         4         13         15         4         12         314.438995         314.439013         -18           16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11         314.294966         314.294969         -3           16         5         12         15         5         11         314.294966         314.117762         66           16         6         11         15         6         19 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                  |    |        |        |    |       |       |                           |                            |         |
| 16         2         15         15         2         14         314.562984         314.563002         -18           16         3         13         15         3         12         314.558954         314.558909         45           16         3         14         15         3         13         314.557072         314.557102         -30           16         4         12         15         4         11         314.438995         314.439019         -24           16         4         13         15         4         12         314.438995         314.439013         -18           16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11         314.294966         314.294969         -3           16         5         12         15         5         11         314.294966         314.294969         -3           16         6         10         15         6         9         314.117828         314.117762         66           16         7         9         15         7         8                                                                                                                                    |    |        |        |    |       |       |                           |                            |         |
| 16         3         13         15         3         12         314.558954         314.558909         45           16         3         14         15         3         13         314.557072         314.557102         -30           16         4         12         15         4         11         314.438995         314.439019         -24           16         4         13         15         4         12         314.438995         314.439013         -18           16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11         314.294966         314.294969         -3           16         6         10         15         6         9         314.117828         314.117762         66           16         6         11         15         6         10         314.117828         314.117762         66           16         7         9         15         7         8         313.901480         313.901492         -12           16         7         10         15         7         9                                                                                                                                     |    |        |        |    |       |       |                           |                            |         |
| 16         3         14         15         3         13         314.557072         314.557102         -30           16         4         12         15         4         11         314.438995         314.439019         -24           16         4         13         15         4         12         314.438995         314.439013         -18           16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11         314.294966         314.294969         -3           16         6         10         15         6         9         314.117828         314.117762         66           16         6         11         15         6         10         314.117828         314.117762         66           16         7         9         15         7         8         313.901480         313.901492         -12           16         7         10         15         7         9         313.901480         313.639422         3942*           16         8         8         15         8         313.64                                                                                                                               |    |        |        |    |       |       |                           |                            |         |
| 16         4         12         15         4         11         314.438995         314.439019         -24           16         4         13         15         4         12         314.438995         314.439013         -18           16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11         314.294966         314.294969         -3           16         6         10         15         6         9         314.117828         314.117762         66           16         6         11         15         6         10         314.117828         314.117762         66           16         7         9         15         7         8         313.901480         313.901492         -12           16         7         10         15         7         9         313.901480         313.901492         -12           16         8         8         15         8         7         313.643364         313.639422         3942*           16         9         7         15         9         6                                                                                                                                      |    |        |        |    |       |       |                           |                            |         |
| 16         4         13         15         4         12         314.438995         314.439013         -18           16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11         314.294966         314.294969         -3           16         6         10         15         6         9         314.117828         314.117762         66           16         6         11         15         6         10         314.117828         314.117762         66           16         7         9         15         7         8         313.901480         313.901492         -12           16         7         10         15         7         9         313.901492         -12           16         8         8         15         8         7         313.643364         313.639422         3942*           16         8         9         15         8         8         313.643364         313.639422         3942*           16         9         7         15         9         6         313.302230                                                                                                                                      |    |        |        |    |       |       |                           |                            |         |
| 16         5         11         15         5         10         314.294966         314.294969         -3           16         5         12         15         5         11         314.294966         314.294969         -3           16         6         10         15         6         9         314.117828         314.117762         66           16         6         11         15         6         10         314.117828         314.117762         66           16         7         9         15         7         8         313.901480         313.901492         -12           16         7         10         15         7         9         313.901480         313.901492         -12           16         8         8         15         8         7         313.643364         313.639422         3942*           16         8         9         15         8         8         313.643364         313.639422         3942*           16         9         7         15         9         6         313.302230         313.322844         -20614*           16         9         8         15         9         7                                                                                                                                    |    |        |        |    |       |       |                           |                            |         |
| 16         5         12         15         5         11         314.294966         314.294969         -3           16         6         10         15         6         9         314.117828         314.117762         66           16         6         11         15         6         10         314.117828         314.117762         66           16         7         9         15         7         8         313.901480         313.901492         -12           16         8         8         15         7         9         313.901492         -12         -12           16         8         8         15         8         7         313.643364         313.639422         3942*           16         9         7         15         9         6         313.302230         313.322844         -20614*           16         9         8         15         9         7         313.302230         313.322844         -20614*           17         1         17         16         1         16         331.196563         331.196560         3                                                                                                                                                                                                           |    |        |        |    |       |       |                           |                            | •       |
| 16         6         10         15         6         9         314.117828         314.117762         66           16         6         11         15         6         10         314.117828         314.117762         66           16         7         9         15         7         8         313.901480         313.901492         -12           16         7         10         15         7         9         313.901480         313.901492         -12           16         8         8         15         8         7         313.643364         313.639422         3942*           16         9         7         15         9         6         313.302230         313.322844         -20614*           16         9         8         15         9         7         313.302230         313.322844         -20614*           17         1         17         16         1         16         331.196563         331.196560         3                                                                                                                                                                                                                                                                                                                      |    |        |        |    |       |       |                           |                            |         |
| 16     6     11     15     6     10     314.117828     314.117762     66       16     7     9     15     7     8     313.901480     313.901492     -12       16     7     10     15     7     9     313.901480     313.901492     -12       16     8     8     15     8     7     313.643364     313.639422     3942*       16     9     7     15     9     6     313.302230     313.322844     -20614*       16     9     8     15     9     7     313.302230     313.322844     -20614*       17     1     17     16     1     16     331.196563     331.196560     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |        |        |    |       |       |                           |                            |         |
| 16       7       9       15       7       8       313.901480       313.901492       -12         16       7       10       15       7       9       313.901480       313.901492       -12         16       8       8       15       8       7       313.643364       313.639422       3942*         16       9       7       15       9       6       313.302230       313.322844       -20614*         16       9       8       15       9       7       313.302230       313.322844       -20614*         17       1       17       16       1       16       331.196563       331.196560       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |        |        |    |       |       |                           |                            |         |
| 16     7     10     15     7     9     313.901480     313.901492     -12       16     8     8     15     8     7     313.643364     313.639422     3942*       16     8     9     15     8     8     313.643364     313.639422     3942*       16     9     7     15     9     6     313.302230     313.322844     -20614*       16     9     8     15     9     7     313.302230     313.322844     -20614*       17     1     17     16     1     16     331.196563     331.196560     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |        |        |    |       |       |                           |                            |         |
| 16     8     8     15     8     7     313.643364     313.639422     3942*       16     8     9     15     8     8     313.643364     313.639422     3942*       16     9     7     15     9     6     313.302230     313.322844     -20614*       16     9     8     15     9     7     313.302230     313.322844     -20614*       17     1     17     16     1     16     331.196563     331.196560     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |        |        |    |       |       |                           |                            |         |
| 16     8     9     15     8     8     313.643364     313.639422     3942*       16     9     7     15     9     6     313.302230     313.322844     -20614*       16     9     8     15     9     7     313.302230     313.322844     -20614*       17     1     17     16     1     16     331.196563     331.196560     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |        |        |    |       |       |                           |                            |         |
| 16     9     7     15     9     6     313.302230     313.322844     -20614*       16     9     8     15     9     7     313.302230     313.322844     -20614*       17     1     17     16     1     16     331.196563     331.196560     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |        |        |    |       | 7     |                           |                            | 3942*   |
| 16     9     8     15     9     7     313.302230     313.322844     -20614*       17     1     17     16     1     16     331.196563     331.196560     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16 |        |        | 15 | 8     | 8     |                           |                            | 3942*   |
| <u>17 1 17 16 1 16 331.196563 331.196560 3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16 | 9      | 7      | 15 | 9     | 6     | 313.302230                | 313.322844                 | -20614* |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 | 9      | 8      | 15 | 9     | 7     | 313.302230                |                            | -20614* |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 | 1      | 17     | 16 | 1     | 16    | 331.196563                | 331.196560                 | 3       |
| * Not included in the fit because of the $K_{\alpha}$ value larger than 7 (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _  |        |        |    |       |       |                           |                            |         |

<sup>\*</sup> Not included in the fit because of the  $K_a$  value larger than 7 (see text).

Table 2b. Correlation matrix of the fit.

|                | A     | В     | C     | $D_J$ | $D_{JK}$ | $d_1$ | $d_2$ | $H_{JK}$ | $H_{KJ}$ | $L_{JJKK}$ | $L_{JKKK}$ |
|----------------|-------|-------|-------|-------|----------|-------|-------|----------|----------|------------|------------|
| $\overline{A}$ | 100   | -9.9  | 2.5   | 9.6   | -24.2    | 8.6   | 59.3  | 10.3     | -40.8    | 9          | -49.9      |
| B              | -9.9  | 100   | -74.9 | 49.8  | 35.1     | -91.9 | -4.3  | 32.4     | 23.5     | 25.5       | 9.4        |
| C              | 2.5   | -74.9 | 100   | 15.3  | 11.9     | 88.1  | 2     | 11.8     | 7.9      | 9.9        | 2.5        |
| $D_J$          | 9.6   | 49.8  | 15.3  | 100   | 55.7     | -23.6 | 8.6   | 68.7     | 25.8     | 55         | -6.2       |
| $D_{JK}$       | -24.2 | 35.1  | 11.9  | 55.7  | 100      | -15   |       | 83.3     | 87.5     | 80.4       | 47.1       |
| $d_1$          | 8.6   | -91.9 |       | -23.6 | -15      | 100   | 4     | -14.4    | -9.5     | -11        | -3.4       |
| $d_2$          | 59.3  | -4.3  | 2     | 8.6   | -13.7    | 4     | 100   | 7.1      | -24.5    | 5.9        | -30.3      |
| $H_{JK}$       | 10.3  | 32.4  | 11.8  | 68.7  | 83.3     | -14.4 | 7.1   | 100      | 50.1     | 96         | -5         |
| $H_{KJ}$       | -40.8 | 23.5  | 7.9   | 25.8  | 87.5     | -9.5  | -24.5 | 50.1     | 100      | 53.2       | 81.5       |
| $L_{JJKK}$     | 9     | 25.5  | 9.9   | 55    | 80.4     | -11   | 5.9   | 96       | 53.2     | 100        | -4.1       |
| $L_{JKKK}$     | -49.9 | 9.4   | 2.5   | -6.2  | 47.1     | -3.4  | -30.3 | -5       | 81.5     | -4.1       | 100        |

A pyrex vessel, containing the pyrolysis products, was filled with argon up to atmospheric pressure at room temperature and connected directly to the valve for the beam generation. The accuracy for this type of measurements is estimated to be  $\pm 2$  kHz.

### Results

The rotational spectrum of H<sub>2</sub>C<sub>2</sub><sup>17</sup>O was predicted from structural calculations based on the rotational constants of H<sub>2</sub>C<sub>2</sub>O [27] and its <sup>13</sup>C, <sup>18</sup>O and HD isotopic species [6, 7]. Firstly, we could assign the  $K_a = 3$  doublets at high frequencies, followed by additional lines with  $K_a = \text{odd}$  which are, because of the spin statistics, three times stronger than the lines with  $K_a$  = even. Through successive fits it was possible to assign all lines up to  $K_a = 7$ , which revealed no relevant deviation from the predicted absorption frequencies: The lines have always been found within an interval of a few 100 kHz with respect to the calculated ones, as far as the value of  $K_a$  was limited to  $K_a \leq 7$ . For higher  $K_a$  values the well-known effect of interactions with the lowest vibrational excited states through the centrifugal distortion [28] got more and more evident.

We have performed different fits, changing the maximum value of the  $K_a$  quantum number from 5 up to 9. As can be seen from Table 1, the standard error of the fit does not change very much up to a maximum  $K_a$  value of 7, but it increases significantly when lines with  $K_a = 8$  and 9 are included in the fit. In Fig. 1 we report a plot of the frequencies for given values of  $K_a$  of the transition line  $J' \leftarrow J$ , 15  $\leftarrow$  14, comparing the experimental absorption frequencies with the calculated ones (the latter obtained using the parameters of the fit up to  $K_a = 7$ ). The data used for the best fit (with  $K_a$  limited to a value of 7) are given in Table 2.

The fit of the measured frequencies has been made using Watson's S-reduced Hamiltonian in the  $I^r$  axis representation, because the molecule is a prolate top with asymmetry parameter  $\kappa = -0.9974$ . As was to be expected, the value obtained for the constant A (Table 3) is almost identical with the value obtained for the main isotopomer and the two <sup>13</sup>C species, though in the present case the error of the fit seems to be too optimistic. The values of the constants B and C are in the range limited by the values of the normal and the <sup>18</sup>O isotopomer [7]. The  $D_K$ ,  $H_J$ , and  $H_K$  centrifugal distortion constants were fixed to the values obtained for the normal isotopomer [27]. The addition of the two octic constants  $L_{JJKK}$  and  $L_{JKKK}$ to the pool of determinable centrifugal distortion constants led to a better result of the fit (in comparison with that obtained by limiting the constants to sextic order).

The quadrupole hyperfine structure of the  $1_{01} \leftarrow 0_{00}$  transition due to the nuclear spin I = 5/2 of  $^{17}\mathrm{O}$  was observed experimentally by means of a MBFTMW spectrometer at the frequency predicted by the high frequency lines fit. Unfortunately, only the quadrupole constant  $\chi_{aa}$  could be determined by the three possible hyperfine components (Table 5) – due to the lack of experimental possibilities we could not investigate frequencies higher than 26 GHz.

#### **Structure Determination**

We have used the acquisition of the additional set of rotational constants as an opportunity to carry out a new calculation to confirm the molecular structure of ketene. We have chosen to limit the calculations to the  $r_0$  and  $r_{\rm s}$  structure; the results are presented in Table 4, where they are compared to the  $r_{\rm e}$  equilibrium structure from [1].

D2CCOd H,CCOa H2CC17Ob H2CC18Oc H<sub>2</sub>13CCOc H<sub>2</sub>C<sup>13</sup>CO<sup>c</sup> DHCCO<sup>d</sup>  $A^{(S)}$ 282334(521) 282101.185(409) 282072(22) 287350(910) 282112(334) 194305(38) 141537(12)  $B^{(S)}$ 10293.32117(80) 10013.476(3) 9761.2368(33) 9960.9659(79) 10293.6209(58) 9120.8296(14) 9647.0664(13)  $C^{(S)}$ 9915.90548(82) 9655.9118(24) 9421.1236(33) 9607.1276(84) 9916.2046(57) 9174.6457(13) 8552.7008(16) 1.79167(14) 1.7914(21) 1.7900(33) 1.7914813(27) 1.7588(55) 2.60096(51)  $I_a$ 3.57065(30) 49.0977597(43) 50.469888(15) 51.774075(17) 50.735944(40) 49.096330(28) 52.386807(7) 55.409325(8)  $I_b$  $I_c$ 50.9665013(42) 52.338818(14) 53.643178(17) 52.604590(43) 50.964964(28) 55.084308(8) 59.089991(11) Δ 0.077260 0.077263 0.110346 0.077233 0.078630 0.096543 0.110016

Table 3. Rotational constants, principal moments of inertia, and inertial defects of the investigated isotopomers.

The coefficient 505379 MHz·amu·Å² has been used for the conversion.  $\kappa = -0.9974$ . a [27]; b this work; c [7]; d [6]. Data refitted to S-reduced Hamiltonian [7].

Table 4a. Structure data for ketene from the sets of rotational constants given in Table 3.

| Distance, Angle | $r_0$ a    | $r_0^{\mathrm{b}}$ | $r_{\rm s}	ext{-Fit}^{ m c}$ | $r_{\mathrm{s}}^{\mathrm{d}}$ | $r_{ m e}^{ m \ e}$ | Unit |
|-----------------|------------|--------------------|------------------------------|-------------------------------|---------------------|------|
| СО              | 116.3(38)  | [116.1]            | 116.15(131)                  | 116.19(4)                     | 116.030(29)         | pm   |
| CC              | 131.5(40)  | 131.66(12)         | 131.42(259)                  | 131.38(4)                     | 131.212(30)         | pm   |
| CH              | 107.6(7)   | 107.62(25)         | 107.93(64)                   | 107.954(104)                  | 107.576(7)          | pm   |
| HCH             | 122.27(71) | [122.1]            | 122.11(121)                  | 122.127(62)                   | 121.781(12)         | 0    |

<sup>&</sup>lt;sup>a</sup> MWSTRGEOM program [35, 36] written by V. Typke was used. Correlation matrix a) (see below). <sup>b</sup> Because of the high correlation coefficients CO/CC and CH/HCH, CO and HCH were fixed to the values of the  $r_s$ -fit. Correlation Matrix b) (see below). <sup>c</sup>  $r_s$ -fit program RSSTR written by V. Typke [30, 31, 33] was used. Center of mass condition has been used, and out-of-plane coordinates have been fixed to zero. Correlation Matrix c) (see below). <sup>d</sup> Kraitchman's [32] substitution structure. Program RU233 by H. D. Rudolph [29] was used. Because of the imaginary value of the carbonyl-C-coordinate, the first moment conditions have been used which lead to a real value of  $x_C = 2.09(4)$  pm. For the distance C-O the newly determined data of the <sup>17</sup>O isotopomer were used. Errors given in parentheses reflect the uncertainty of constants. <sup>c</sup> Equilibrium structure (I; 1s-ABC) [1].

|     | Correlation Matrix a) |        |     |     | Correlation Matrix b) |        |     |     | Correlation Matrix c) |       |        |     |
|-----|-----------------------|--------|-----|-----|-----------------------|--------|-----|-----|-----------------------|-------|--------|-----|
|     | C-O                   | C-C    | С-Н | НСН |                       | C-C    | С-Н |     | C-O                   | C-C   | С-Н    | НСН |
| C-O | 1                     |        |     |     | C-C                   | 1      |     | C-O | 1                     |       |        |     |
| C-C | -1                    | 1      |     |     | C-H                   | -0.071 | 1   | C-C | -0.968                | 1     |        |     |
| C-H | 0.928                 | -0.938 | 1   |     |                       |        |     | C-H | -0.014                | 0.000 | 1      |     |
| HCH | 0.928                 | -0.938 | 1   | 1   |                       |        |     | HCH | 0.009                 | 0.000 | -0.643 | 1   |

# a) $r_s$ -Structure

For the determination of the  $r_s$  structure we made use of two programs:  $R\dot{U}233$  written by Rudolph [29] and RSSTR ( $r_s$ -fit) written by Typke [30, 31].

The program *RU233* is a traditional one based on Kraitchman's equations [32], which uses the tensor of the planar inertial moments of an isotopomer expressed as function of the principal planar moments of the parent molecule and the cartesian coordinates of the atom substituted into this isotopomer. These equations must be separately applied to the parent molecule and to monosubstituted isotopomers to obtain a substitution structure which can be complete or partial, depending on the number of investigated isotopomers. *RU233* provides the possibility to use additional substituted isotopomers which are consid-

Table 4b. Substitution coordinates for ketene. Values given in pm.

| Atom          | a             | b            |
|---------------|---------------|--------------|
| 0             | 118.2805(31)  | 0            |
| C (carbonyl)  | 2.09(4)       | 0            |
| C (methylene) | 129.2938(419) | 0            |
| Н             | 181.6181(75)  | 94.4260(144) |

ered as daughters of the monosubstituted ones, so that, starting from a parent molecule, one obtains the sequence mother – daughter – grand daughter. The advantage of this method is an improved determination of small coordinates (but larger than 12 pm) [33] for atoms near to the center of mass or a principal axis of the molecule.

In the  $r_s$ -fit program *RSSTR*, on the other hand, Typke has shown how the system of separate equa-

Table 5. Hyperfine structure of the  $J'_{Ka'Kc'} \leftarrow J_{KaKc} = l_{01} \leftarrow 0_{00}$  transition of (<sup>17</sup>O)ketene, calculated according to the method described by Bragg and Golden [37]. Spin-rotation interactions could not be considered due to lack of additional information. – Value of the quadrupole coupling constant:  $\chi_{aa} = -1.534(54)$  MHz.

| J' | $K'_a$ | $K_c'$ | J | $K_a$ | $K_c$ | F'  | F   | ν <sub>exp</sub> / MHz | $ u_{\rm calc}$ / MHz | e-c / kHz |
|----|--------|--------|---|-------|-------|-----|-----|------------------------|-----------------------|-----------|
| 1  | 0      | 1      | 0 | 0     | 0     | 3/2 | 5/2 | 19669.595              | 19669.586             | 8.2       |
| 1  | 0      | 1      | 0 | 0     | 0     | 5/2 | 5/2 | 19669.131              | 19669.118             | 12.5      |
| 1  | 0      | 1      | 0 | 0     | 0     | 7/2 | 5/2 | 19669.439              | 19669.446             | 7.0       |

tions, like that obtained by application of Kraichman's method to a data set of different isotopomers, can be linearized and arranged into a least squares system to obtain an  $r_s$  structure from an iterative fit to the planar moments for a sufficiently large data set of substituted isotopomers. When the number of equations equals the number of coordinates to be determined, the resulting structure is identical with the result from Kraitchman's separate equations of monosubstituted isotopomers.

The program RSSTR provides the possibility of introducing the first and second moment conditions as constraints into the least squares formalism for a better determination of very small coordinates. In the case of a bad convergence of the  $r_s$ -fit – always when the Kraichman's equations would give an *imaginary* coordinate if the substituted atom is on a plane of symmetry – it is possible to avoid the complication by fixing to zero the out of plane coordinate of the substituted atom known to lie on a symmetry plane of the molecule. Both possibilities have been used in the case of ketene because of the planarity of the molecule and the position of the carbon atom of the C=O group which is very near to the center of mass of the molecule and therefore difficult to determine (even with an "oversized" data set).

The results of the application of these two programs are shown in Table 4a (Columns 3, 4) and in Table 4b for the coordinates of the pure substitution method.

# b) $r_0$ -Structure

For this type of structure [33, 34] we used the *MWSTRGEOM* program (version 2.3) written by

The oversized substitution data set considered here seems indeed not to be sufficient for the determination of a reasonable  $r_0$  or  $r_{\rm s}$  structure without being forced to use the first moment conditions which are, strictly speaking, valid only for the equilibrium structure. Rotational constants of more multisubstituted isotopomers seem to be necessary to give a reliable structure of this molecule based on experimental data.

# Acknowledgements

We wish to thank Dr. L. Nemes, Budapest, Prof. Dr. H. D. Rudolph, Ulm, and Dr. V. Typke, Ulm, for providing us with their programs for the rotational analysis and the structure determination. Furthermore, we want to thank the Deutsche Forschungsgemeinschaft for a grant and Prof. Dr.-Ing. R. Knöchel, Kiel, for research possibilities. The central workshop of the Technical Faculty gave the necessary assistance, which is gratefully acknowledged.

Particular thanks go to Prof. Dr. H. Dreizler, Kiel, for the use of his MBFTMW-Spectrometer and for reading the manuscript.

Typke [35, 36]. It performs a non linear weighted fit of bond lengths, bond angles, and dihedral angles to measured rotational constants. Using the rotational constants listed in Table 3, structural parameters have been obtained with only indicative character because of the high correlation coefficients which connect some of the fitted parameters with each other (Column 1, Table 4a). Constraining two parameters, as it is shown in Table 4a (Column 2), to values obtained through the  $r_{\rm s}$ -fit method, one gets values for the other two parameters which differ only slightly from those of the  $r_{\rm s}$ -fit structure.

A. L. L. East, W. D. Allen, and J. Klippenstein, J. Chem. Phys. 102, 8506 (1995).

<sup>[2]</sup> M. Gruebele, J. W. C. Johns, and L. Nemes, J. Mol. Spectrosc. 198, 376 (1999).

<sup>[3]</sup> L. Nemes, D. Luckhaus, M. Quack, and J. W. C. Johns, J. Mol. Struc. 517, 217 (2000).

<sup>[4]</sup> L. Nemes and J. W. C. Johns, Acta Physica Hungarica, 74, 379 (1994).

- [5] R. Hinze, H. Zerbe-Foese, J. Doose, and A. Guarnieri, J. Mol. Spectrosc. 176, 133 (1996).
- [6] L. Nemes and M. Winnewisser, Z. Naturforsch. 31a, 272 (1976).
- [7] R. D. Brown, P. D. Godfrey, D. McNaughton, A. P. Pierlot, and W. H. Taylor, J. Mol. Spectrosc. 140, 340 (1990).
- [8] J. M. Pasachoff, C. A. Gottlieb, L. E. Snyder, D. Buhl, P. Palmer, B. Zuckerman, and D. F. Dickinson, Bull. Amer. Astron. Soc. 2, 213 (1970).
- [9] B. E. Turner, Astrophys. J. 213, L75 (1977).
- [10] P. G. Wannier and R. Linke, Astrophys. J. 226, 817 (1978).
- [11] J. M. Hollis, R. D. Suenram, F. J. Lovas, and L. E. Snyder, Astron. Astrophys. 126, 393 (1983).
- [12] G. A. Blake, E. C. Sutton, C. R. Masson, and T. G. Phillips, Astrophys. J. Suppl. Series 60, 357 (1986).
- [13] S. E. Cummins, R. A. Linke, and P. Thaddeus, Astrophys. J. Suppl. Series 60, 819 (1986).
- [14] H. E. Matthews and T. J. Sears, Astrophys. J. 300, 766 (1986).
- [15] W. M. Irvine, P. Friberg, N. Kaifu, K. Kawaguchi, Y. Kitamura, H. E. Matthews, Y. Minh, S. Saito, N. Ukita, and S. Yamamoto, Astrophys. J. 342, 871 (1989).
- [16] L. M. Ziurys and D. McGonagle, Astrophys. J. Suppl. Series 89, 155 (1993).
- [17] B. E. Turner, R. Terzieva, and E. Herbst, Astrophys. J. 518, 699 (1999).
- [18] B. E. Turner, Astrophys. J. 542, 837 (2000).
- [19] A. Nummelin, P. Bergman, A. Hjalmarson, P. Friberg, W. M. Irvine, T. J. Millar, M. Ohishi, and S. Saito, Astrophys. J. Suppl. Series 128, 213 (2000).
- [20] L. J. Sage, R. Mauersberger, and C. Henkel, Astron. Astrophys. 249, 31 (1991).

- [21] G. A. Blake, E. F. van Dishoeck, D. J. Jansen, T. D. Groesbeck, and L. G. Mundy, Astrophys. J. 428, 680 (1994).
- [22] F. Wyrowski, P. Hofner, P. Schilke, C. M. Walmsley, D. J. Wilner, and J. E. Wink, Astron. Astrophys. 320(2), L17 (1997).
- [23] A. Heikkilae, L. E. B. Johansson, and H. Olofsson, Astron. Astrophys. 332(2), 493 (1998).
- [24] E. F. Ladd, G. A. Fuller, and J. R. Deane, Astrophys. J. 495(2), 871 (1998).
- [25] P. Andreani, A. Cimatti, L. Loinard, and H. Röttgering, Astron. Astrophys. 354, L1 (2000).
- [26] U. Andresen, H. Dreizler, J.-U. Grabow, and W. Stahl, Rev. Scient. Instrum. 61, 3094 (1990).
- [27] J. W. C. Johns, L. Nemes, K. M. T. Yamada, T. Y. Wang, J. L. Domenech, J. Santos, P. Cancio, D. Bermejo, J. Ortigoso, and R. Escribano, J. Mol. Spectrosc. 156, 501 (1992).
- [28] S. Urban and K. M. T. Yamada, J. Mol. Spectrosc. 160, 279 (1993).
- [29] J. Kraitchman, Amer. J. Phys. 21, 17 (1953).
- [30] V. Typke, J. Mol. Struct. **384**, 35 (1996).
- [31] H. D. Rudolph, J. Mol. Spectrosc. 89, 430 (1981); 89, 460 (1981).
- [32] H. D. Rudolph, Advances in Molecular Structure Research 1, 63 (1995).
- [33] R. H. Schwendeman, in: Critical Evaluation of Chemical and Physical Structural Informations; National Academy of Sciences, Washington DC, 1974, p. 94.
- [34] H. D. Rudolph, Struct. Chem. 2, 581 (1991).
- [35] V. Typke, J. Mol. Spectrosc. 69, 173 (1978).
- [36] V. Typke, Program MWSTRGEOM, Version 3.2 (f90 and F), 1998-12-17.
- [37] J. K. Bragg and S. Golden, Phys.Rev. 75, 735 (1949)